๐—ฌ๐—ผ๐˜‚๐—ฟ Machine Learning ๐—๐—ผ๐˜‚๐—ฟ๐—ป๐—ฒ๐˜† ๐—ฆ๐˜๐—ฎ๐—ฟ๐˜๐˜€ ๐—›๐—ฒ๐—ฟ๐—ฒ – Top 24 Points to get Success

80% of Machine Learning Candidates Get Rejectedโ€ฆ Because They Canโ€™t Answer These Questions!

From โ€œWhatโ€™s a Model?โ€ to โ€œLetโ€™s Deploy It!โ€
๐—ฌ๐—ผ๐˜‚๐—ฟ ๐— ๐—Ÿ ๐—๐—ผ๐˜‚๐—ฟ๐—ป๐—ฒ๐˜† ๐—ฆ๐˜๐—ฎ๐—ฟ๐˜๐˜€ ๐—›๐—ฒ๐—ฟ๐—ฒ

๐—•๐—ฒ๐—ด๐—ถ๐—ป๐—ป๐—ฒ๐—ฟ ๐—Ÿ๐—ฒ๐˜ƒ๐—ฒ๐—น

1. What is Machine Learning?
2. Types of ML (Supervised, Unsupervised, Reinforcement)
3. Key Terminologies (Features, Labels, Training, Testing)
4. Data Preprocessing (Handling Nulls, Encoding, Scaling)
5. Train-Test Split & Cross-Validation
6. Evaluation Metrics (Accuracy, Precision, Recall, F1)
7. Overfitting vs Underfitting

๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐—บ๐—ฒ๐—ฑ๐—ถ๐—ฎ๐˜๐—ฒ ๐—Ÿ๐—ฒ๐˜ƒ๐—ฒ๐—น

8. Linear & Logistic Regression
9. Decision Trees & Random Forests
10. K-Nearest Neighbors (KNN)
11. Support Vector Machines (SVM)
12. Naive Bayes Algorithm
13. Clustering (K-Means, Hierarchical)
14. Dimensionality Reduction (PCA, t-SNE)

๐—”๐—ฑ๐˜ƒ๐—ฎ๐—ป๐—ฐ๐—ฒ๐—ฑ ๐—Ÿ๐—ฒ๐˜ƒ๐—ฒ๐—น

15. Ensemble Techniques (Bagging, Boosting, XGBoost)
16. Deep Learning (ANN, CNN, RNN Basics)
17. NLP Basics (Text Preprocessing, TF-IDF, Word Embeddings)
18. Time Series Forecasting (ARIMA, LSTM)
19. Model Deployment (Flask, Streamlit, FastAPI)
20. Hyperparameter Tuning (GridSearch, RandomizedSearch)
21. Real-world ML Projects to Build
22. Top Datasets for ML Practice
23. Common Mistakes & Best Practices
24. Free Tools: Google Colab, Scikit-learn, TensorFlow, PyTorch